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Variational Data Assimilation
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Subject to the strong constraint that the model states are a solution to the
numerical model and that the tangent linear hypothesis holds.
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Hamiltonian formulation of 4D-Var
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Non-autonomous system

Consider extended system:

Define a new Hamiltonian:
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Euler-B is a symplectic integrator

Euler-B scheme for extended Hamiltonian:
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Symplectic maps
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Theorem. If  is a symplectic map of the extended system, then
corresponding  non-autonomous system is also a symplectic map.



Numerical schemes

Euler method:
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Euler-B method:
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Project ‘Variational Inference in Stochastic Dynamic
(Environmental) models (VISDEM)’:

Aston University
TU Berlin
UCL
University of Surrey

Variational Gaussian Process
Approximation
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Stochastic dynamics:

Noisy observations:
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Non-Gaussian processes are approximated by a Gaussian
processes Q :

Kullback-Leibler divergence:
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Approximate process:
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Linear SDE:

PDF:
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Kullback -Leibler divergence

KL divergence (Archambeau et al 2008) :
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Figure. Schematic view of VGPA framework.



Hamiltonian formulation of VGPA
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Algorithm

1. Initialize 0, 0, m0 and S0

2. Run model forward for m and S.
3. Calculate Esde and Eobs .
4. Run adjoint system backwards for and .
5. Using conjugate gradient, update , .
6. Calculate KL[Q||P].
7. Repeat steps 2-6 until required accuracy is

reached.



Double-well model with noise

dWdtxxdx 344



Double-well model with noise
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Figure. R = 0.01, =0.5.



Figure. R = 1, =0.5.



Double-well model

Figure. (a) R = 0.01, (b) R = 0.04.



Double-well model

Figure. (c) R = 0.4, (d) R = 1.0.



Conclusions

• We have shown how symplectic methods may be applied
to 4DVAR

• We have studied the application of these methods to
Variational Gaussian Process Approximation to stochastic
dynamical systems

• We have shown that symplectic Euler-B performed better
than non-symplectic Euler scheme in tracking the true state
of the system in the presence of the measurement noise for
stochastically driven double well potential model.


